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Scope - I

The scope of this research is to refine classical continuum
theories of elastic bodies to broaden their range of applicability.

We consider two types of refinement, to

(i) incorporate into a classical theory the effects of
submacroscopic slips and separations (disarrangements);

(ii) adapt the theory to the description of thin bodies.

Examples are

(i) finely layered bodies (stack of papers), granular bodies (pile
of sand), bodies with defects (metal bar);

(ii) membranes (sheet of rubber), thin plates (sheet of metal),
fibered thin bodies (sheet of paper).
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Dimension reduction

Dimension reduction is a way of adapting classical continuum
theories of elastic bodies to thin objects.

It usually involves a limit process in which one or two physical
dimensions are shrunk to zero. Typical limit processes can be
done either via Taylor expansionDeseri, Piccioni, Zurlo – Contin.
Mech. Thermodyn. (2008) or Γ-convergence.Le Dret, Raoult – J.
Math. Pures Appl. (1995)

Le Dret, Raoult – J. Nonlinear Sci. (1996)
Braides, Fonseca – Appl. Math. Optim. (2001)

Information about the microstructure can be lost in the
dimension reduction procedure.
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Structured Deformations

Introduced to provide a multiscale geometry that captures the
contributions at the macrolevel of both smooth geometrical
changes and non-smooth geometrical changes
(disarrangements) at submacroscopic levels3.

Revisited in the spirit of an energetic formulation – good for
variational methodsChoksi, Fonseca – ARMA (1997).

A structured deformation is a pair (g,G) ∈ SBV × L1 with
Dg = ∇gLN + [g]⊗ νHN−1.
Approximation Theorem: there exists fn ∈ SBV such that

fn
L1
→ g and ∇fn

M
⇀ G.

3Del Piero, Owen – ARMA (1993)
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Some examples of Structured Deformations
Structured Deformations are limits of simple deformations.

broken ramp: N = 1, Ω = (0,1), κ = ∅, g(x) = 2x, and G(x) = 1.
Take fn(x) := x + k

n , for k
n 6 x < k+1

n and k = 0, . . . ,n− 1. Then,
fn(x)→ 2x, ∇fn(x) = 1 and Dfn = 1L1+

∑n−1
k=1

1
kδk/n.

f1

Dsf1

f2

Dsf2

f3

Dsf3

f4

Dsf4

f1, . . . , f4

Dsf2, D
sf3, D

sf4

deck of cards: N = 3, Ω = (0,1)3, κ = ∅, g(x) = (x1 + x3, x2, x3),
and G(x) = I. Take fn(x) := (x1 + k

n , x2, x3
)
, for k

n 6 x3 <
k+1

n
and k = 0, . . . ,n− 1. Then, fn(x)→ g(x), ∇fn(x) = I and
Dfn = IL3+

∑n−1
k=1

1
kδk/n(x3)e1 ⊗ e3.
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More on Disarrangements

From the examples it should be clear (and this can be
formalized) that the singular part Dsfn (supported on the jump
set S(fn)) diffuses in the limit to generate volume energy
(supported on the bulk).

HN−1(S(fn))→∞, but |Dsfn|(Ω) < +∞.

Singularities are essentially captured by M and its derivatives.
If G and M provide information about plastic deformations, M
and curl M allow to describe the Burgers vectors and the
dislocation density field in a body containing defects.

So, M = ∇g−G is a measurement of how non classical a
deformation is.
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Energies

Typical energies of interest in this context are of the form

E(u) =

∫
Ω

W(∇u,∇2u) +

∫
S(u)

ψ1([u], νu) +

∫
S(∇u)

ψ2([∇u], ν∇u),

with growth and coercivity assumptions on the densities

– which
in general fail to be convex→ relaxation.
The generality of such energies allows to model many physical
phenomena:

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = ψ2 = 0: elasticity;

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = 1, ψ2 = 0: Griffith’s model for
fractures;

W depending on A includes bending effects.
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in general fail to be convex→ relaxation.

The generality of such energies allows to model many physical
phenomena:

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = ψ2 = 0: elasticity;

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = 1, ψ2 = 0: Griffith’s model for
fractures;

W depending on A includes bending effects.

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 7 / 21



Energies

Typical energies of interest in this context are of the form

E(u) =

∫
Ω

W(∇u,∇2u) +

∫
S(u)

ψ1([u], νu) +

∫
S(∇u)

ψ2([∇u], ν∇u),

with growth and coercivity assumptions on the densities – which
in general fail to be convex→ relaxation.
The generality of such energies allows to model many physical
phenomena:

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = ψ2 = 0: elasticity;

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = 1, ψ2 = 0: Griffith’s model for
fractures;

W depending on A includes bending effects.

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 7 / 21



Energies

Typical energies of interest in this context are of the form

E(u) =

∫
Ω

W(∇u,∇2u) +

∫
S(u)

ψ1([u], νu) +

∫
S(∇u)

ψ2([∇u], ν∇u),

with growth and coercivity assumptions on the densities – which
in general fail to be convex→ relaxation.
The generality of such energies allows to model many physical
phenomena:

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = ψ2 = 0: elasticity;

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = 1, ψ2 = 0: Griffith’s model for
fractures;

W depending on A includes bending effects.

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 7 / 21



Energies

Typical energies of interest in this context are of the form

E(u) =

∫
Ω

W(∇u,∇2u) +

∫
S(u)

ψ1([u], νu) +

∫
S(∇u)

ψ2([∇u], ν∇u),

with growth and coercivity assumptions on the densities – which
in general fail to be convex→ relaxation.
The generality of such energies allows to model many physical
phenomena:

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = ψ2 = 0: elasticity;

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = 1, ψ2 = 0: Griffith’s model for
fractures;

W depending on A includes bending effects.

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 7 / 21



Energies

Typical energies of interest in this context are of the form

E(u) =

∫
Ω

W(∇u,∇2u) +

∫
S(u)

ψ1([u], νu) +

∫
S(∇u)

ψ2([∇u], ν∇u),

with growth and coercivity assumptions on the densities – which
in general fail to be convex→ relaxation.
The generality of such energies allows to model many physical
phenomena:

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = ψ2 = 0: elasticity;

W(ξ,A) = W(ξ) = 1
2 |ξ|

2, ψ1 = 1, ψ2 = 0: Griffith’s model for
fractures;

W depending on A includes bending effects.

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 7 / 21



Scope - II

Programme: do the two relaxation procedures and find an
integral representation.
Questions: (a) how are the two doubly relaxed energies related
to one another (is the diagram a lozenge)?
(b) Does a simultaneous relaxation procedure yield a lower
energy (what about a central path)?

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 8 / 21



Scope - II

Programme: do the two relaxation procedures and find an
integral representation.

Questions: (a) how are the two doubly relaxed energies related
to one another (is the diagram a lozenge)?
(b) Does a simultaneous relaxation procedure yield a lower
energy (what about a central path)?

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 8 / 21



Scope - II

Programme: do the two relaxation procedures and find an
integral representation.
Questions: (a) how are the two doubly relaxed energies related
to one another (is the diagram a lozenge)?

(b) Does a simultaneous relaxation procedure yield a lower
energy (what about a central path)?

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 8 / 21



Scope - II

Programme: do the two relaxation procedures and find an
integral representation.
Questions: (a) how are the two doubly relaxed energies related
to one another (is the diagram a lozenge)?
(b) Does a simultaneous relaxation procedure yield a lower
energy (what about a central path)?

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 8 / 21



Relaxation

Relaxing the energy E means to compute

I(g,G,Γ) := inf
{un}⊂SBV2

{
lim inf

n→∞
E(un) : un

L1
→ g,∇un

L1
→ G,∇2un

∗
⇀ Γ

}

and possibly to get a representation formula,where the bulk and
surface densities are obtained by a cell formula,Choksi, Fonseca
– ARMA (1997) derived by a blow-up method.Fonseca, Müller –
SIAM J. Math. Anal. (1992)

In the formula above, we are looking for the most economical
way to approximate the (second-order)Barroso, Matias, M.,
Owen – ARMA (2017) structured deformation (g,G,Γ) by means
of more regular deformations.

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 9 / 21



Relaxation

Relaxing the energy E means to compute

I(g,G,Γ) := inf
{un}⊂SBV2

{
lim inf

n→∞
E(un) : un

L1
→ g,∇un

L1
→ G,∇2un

∗
⇀ Γ

}
and possibly to get a representation formula,where the bulk and
surface densities are obtained by a cell formula,5 derived by a
blow-up method.6

In the formula above, we are looking for the most economical
way to approximate the (second-order)Barroso, Matias, M.,
Owen – ARMA (2017) structured deformation (g,G,Γ) by means
of more regular deformations.

5Choksi, Fonseca – ARMA (1997)
6Fonseca, Müller – SIAM J. Math. Anal. (1992)
Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 9 / 21



Relaxation

Relaxing the energy E means to compute

I(g,G,Γ) := inf
{un}⊂SBV2

{
lim inf

n→∞
E(un) : un

L1
→ g,∇un

L1
→ G,∇2un

∗
⇀ Γ

}
and possibly to get a representation formula,where the bulk and
surface densities are obtained by a cell formula,5 derived by a
blow-up method.6

In the formula above, we are looking for the most economical
way to approximate the (second-order)7 structured deformation
(g,G,Γ) by means of more regular deformations.

5Choksi, Fonseca – ARMA (1997)
6Fonseca, Müller – SIAM J. Math. Anal. (1992)
7Barroso, Matias, M., Owen – ARMA (2017)
Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 9 / 21



Relaxation à la Choksi-Fonseca - I

The relaxation of an energy like

E(u) :=

∫
Ω

W(∇u) dLN +

∫
S(u)∩Ω

ψ([u], ν(u)) dHN−1,

leads to the representation formula

I(g,G) =

∫
Ω

H(∇g,G) dLN +

∫
S(g)∩Ω

h([g], ν(g)) dHN−1.
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Relaxation à la Choksi-Fonseca - II

The densities H and h are given by

H(A,B):= inf
{∫

Q
W(∇u) dLN +

∫
S(u)∩Q

ψ([u], ν(u)) dHN−1 :

u ∈ SBV(Q;RN),u|∂Q(x) = Ax, |∇u| ∈ Lp(Q),

∫
Q
∇u = B

}
,

h(ξ, η) := inf
{∫

S(u)∩Qη
ψ([u], ν(u)) dHN−1 : u ∈ SBV(Qη;RN),

u|∂Qη(x) = uξ,η, ∇u = 0 a.e.
}
,

where

uξ,η(x) :=

{
ξ if 0 6 x · η < 1/2,

0 if −1/2 < x · η < 0.
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Dimension reduction in the context of SD8

Eε(u) :=

∫
Ωε

W3d(∇u) dx +

∫
Ωε∩S(u)

h3d
(
[u], ν(u)

)
dH2

for u ∈ SBV(Ωε;R3), with Ωε := ω × (− ε
2 ,

ε
2).

Left-hand side: first dim. red., then structured deformations;
Right-hand side: first structured deformations, then dim. red.

8Carita, Matias, M., Owen – J. Elast. (2018)
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Hypotheses on the energy densities
We assume that:

(H1) There exists a constant cW > 0 such that growth conditions
from above and below are satisfied

1
cW
|A|p6 W3d(A),

|W3d(A)−W3d(B)|6 cW |A− B|(1 + |A|p−1 + |B|p−1),

for any A,B ∈ R3×3, and for some p > 1.

(H2) There exists a constant ch > 0, such that for all (λ, ν) ∈ R3 × S2

1
ch
|λ| 6 h3d(λ, ν) 6 ch|λ|.

(H3) h3d(·, ν) is positively 1-homogeneous: for all t > 0, λ ∈ R3

h3d(tλ, ν) = t h3d(λ, ν).

(H4) h3d(·, ν) is subadditive: for all λ1, λ2 ∈ R3

h3d(λ1 + λ2, ν) 6 h3d(λ1, ν) + h3d(λ2, ν).
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Dimension reduction
Rescale by ε in x3 and consider the functional Fε(u)

Eε(u)

ε
=

∫
Ω

W3d

(
∇αu

∣∣∣∣∇3u
ε

)
dx +

∫
Ω∩S(u)

h3d

(
[u], να(u)

∣∣∣∣ν3(u)

ε

)
dH2(x).

The coercivity assumption grants boundedness of the gradients
in Lp, so that ε−1

n ∇3un has a weak limit d ∈ Lp(Ω;R3). Therefore,
given (u,d) ∈ SBV(ω;R3)× Lp(ω;R3), let

F3d,2d(u,d) := inf
{

lim inf
n→∞

Fεn(un) : un ∈ SBV(Ω;R3),un
L1(Ω;R3)−→ u,∫

I

∇3un

εn
dx3 ⇀ d in Lp(ω;R3), ν(un) · e3 = 0

}
.

Theorem (Carita-Matias-M.-Owen (2018))

F3d,2d(u,d) =

∫
ω

W3d,2d(∇u,d) dxα +

∫
ω∩S(u)

h3d,2d([u], ν(u)) dH1(xα).
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Integral representation
Theorem (Carita-Matias-M.-Owen (2018) – cont’d)

W3d,2d : R3×2 × R3 → [0,+∞) and h3d,2d : R3 × S1 → [0,+∞) are

W3d,2d(A,d) = inf
{∫

Q′
W3d(∇αu|z) dxα +

∫
Q′∩S(u)

h3d([u], ν̃(u)) dH1(xα) :

u ∈ SBV(Q′;R3), z ∈ Lp
Q′−per(R

2;R3), u|∂Q′(xα) = Axα,
∫

Q′
z dxα = d

}
,

h3d,2d(λ, η) = inf
{∫

Q′η∩S(u)
h3d([u], ν̃(u)) dH1(xα) : u ∈ SBV(Q′η;R3),

u|∂Q′η(xα) = γλ,η(xα), ∇u = 0, a.e.
}

;

with

γλ,η(xα) :=

{
λ if 0 6 xα · η < 1

2 ,

0 if −1
2 < xα · η < 0.
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About the proof
The proof is obtained via blow-up:

we prove upper bounds for the Radon-Nikodým derivatives
of F3d,2d(u,d) with respect to L2 and H1 S(u) at x0 ∈ ω:

dF3d,2d(u,d)

dL2 (x0)6W3d,2d(∇αu(x0),d(x0)),
dF3d,2d(u,d)

dH1 S(u)
(x0)6h3d,2d([u](x0), ν(u)(x0)).

lower bounds for the Radon-Nikodým derivatives of µ, the
weak-* limit of the measures µn

µn(B) :=

∫
B×I

W3d

(
∇αun

∣∣∣∇3un

εn

)
dx +

∫
(B×I)∩S(un)

h3d([un], ν̃(un))dH2(x).

with respect to L2 and |[u]|H1 S(u):

dµ
dL2 (x0) > W3d,2d(∇αu(x0),d(x0)),

dµ
d(|[u]|H1 S(u))

(x0) >
h3d,2d([u](x0), ν(u)(x0))

|[u]|(x0)
.
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About the proof
The proof is obtained via blow-up:

we prove upper bounds for the Radon-Nikodým derivatives
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dH1 S(u)
(x0)6h3d,2d([u](x0), ν(u)(x0)).

lower bounds for the Radon-Nikodým derivatives of µ, the
weak-* limit of the measures µn
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W3d
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εn
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The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))
The densities for the doubly relaxed energy are obtained:

F3d,2d,SD(g,G,d) =

∫
ω

W3d,2d,SD(∇g,G,d) dxα+
∫
ω∩S(g)

h3d,2d,SD([g], ν(g)) dH1,

F3d,SD,2d(g,G,d) =

∫
ω

W3d,SD,2d(∇g,G,d) dxα+
∫
ω∩S(g)

h3d,SD,2d([g], ν(g)) dH1.

Recall that
1
εn

∫
I
∇3 un dx3

Lp
⇀ d :

the vector d emerges as the weak limit of the out-of-plane
deformation gradient.
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An example

Consider an initial energy Eε in which the densities are W3d = 0
and h3d(λ, ν) = |λ · ν|.

Theorem (Carita-Matias-M.-Owen (2018))
Let W3d = 0 and h3d(λ, ν) = |λ · ν|. Then the two functionals
F3d,2d,SD and F3d,SD,2d coincide (and neither one depends on d):

F3d,SD,2d(g,G,d) = F̂3d,SD,2d(g,G) =

∫
ω

| tr(∇̂g− Ĝ)|dxα+

∫
ω∩S(g)

|[g]·ν̃(g)|dH1(xα).

The result is in agreement with previous results in the
literature.Owen, Paroni – ARMA (2015)

Barroso, Matias, M., Owen – MEMOCS (2017)
Šilhavý – MEMOCS (2017)
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Comparison with other relaxation procedures
For a function u ∈ SBV2(Ωε;R3), consider the initial energy10

EMS
ε (u) :=

∫
Ωε

W(∇u,∇2u) dx +

∫
Ωε∩S(u)

Ψ1([u], ν(u)) dH2(x)

+

∫
Ωε∩S(∇u)

Ψ2([∇u], ν(∇u)) dH2(x)

and the relaxation of the rescaled energy Jε(u) := 1
εEMS

ε (u)

I(g,G,d) := inf
{

lim inf
n→∞

Jεn (un) : un ∈ SBV2(Ω;R3),un
L1
→ g, 1

εn
∇3un

L1
→ d,∇αun

L1
→ G

}
,

Theorem (Carita-Matias-M.-Owen (2018))
The simultaneous procedure yields a relaxed energy which is
lower than the two sequential procedures.
In fact, in the case W3d = 0 and h3d(λ, ν) = |λ · ν|, the relaxed
energy is always equal to zero.

10Matias, Santos – Appl. Math. Optim. (2014)
Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 19 / 21



Comparison with other relaxation procedures
For a function u ∈ SBV2(Ωε;R3), consider the initial energy10

EMS
ε (u) :=

∫
Ωε

W(∇u,∇2u) dx +

∫
Ωε∩S(u)

Ψ1([u], ν(u)) dH2(x)

+

∫
Ωε∩S(∇u)

Ψ2([∇u], ν(∇u)) dH2(x)

and the relaxation of the rescaled energy Jε(u) := 1
εEMS

ε (u)

I(g,G,d) := inf
{

lim inf
n→∞

Jεn (un) : un ∈ SBV2(Ω;R3),un
L1
→ g, 1

εn
∇3un

L1
→ d,∇αun

L1
→ G

}
,

Theorem (Carita-Matias-M.-Owen (2018))
The simultaneous procedure yields a relaxed energy which is
lower than the two sequential procedures.

In fact, in the case W3d = 0 and h3d(λ, ν) = |λ · ν|, the relaxed
energy is always equal to zero.

10Matias, Santos – Appl. Math. Optim. (2014)
Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 19 / 21



Comparison with other relaxation procedures
For a function u ∈ SBV2(Ωε;R3), consider the initial energy10

EMS
ε (u) :=

∫
Ωε

W(∇u,∇2u) dx +

∫
Ωε∩S(u)

Ψ1([u], ν(u)) dH2(x)

+

∫
Ωε∩S(∇u)

Ψ2([∇u], ν(∇u)) dH2(x)

and the relaxation of the rescaled energy Jε(u) := 1
εEMS

ε (u)

I(g,G,d) := inf
{

lim inf
n→∞

Jεn (un) : un ∈ SBV2(Ω;R3),un
L1
→ g, 1

εn
∇3un

L1
→ d,∇αun

L1
→ G

}
,

Theorem (Carita-Matias-M.-Owen (2018))
The simultaneous procedure yields a relaxed energy which is
lower than the two sequential procedures.
In fact, in the case W3d = 0 and h3d(λ, ν) = |λ · ν|, the relaxed
energy is always equal to zero.

10Matias, Santos – Appl. Math. Optim. (2014)
Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 19 / 21



The functional I admits an integral representation I = I1 + I2 , where, for (g,G) ∈ BV2(ω; R3)×BV(ω; R3×2),

I1(g,G) =

∫
ω

W1(G−∇g) dxα +

∫
ω

W1

(
−

dDcg

d|Dcg|

)
d|Dcg|(xα) +

∫
ω∩S(g)

Γ1([g], ν(g)) dH1
(xα)

and for (d,G) ∈ BV(ω; R3)×BV(ω; R3×2)

I2(d,G) =

∫
ω
W2(d,G,∇d,∇G) dxα+

∫
ω
W∞2

(
d,G,

dDc(d,G)

d|Dc(d,G)|

)
d|Dc

(d,G)|+
∫
ω∩S((d,G))
Γ2((d,G)

+
, (d,G)

−
, ν((d,G))) dH1

(xα).

The energy densities of I1 are obtained as follows: for each A ∈ R3×2 , λ ∈ R3 , and η ∈ S1 ,

W1(A) = inf
{∫

Q′∩S(u)
Ψ1([u], ν(u)) dH1

(xα) : u ∈ SBV(Q′; R3
), u|∂Q′ = 0,∇u = A a.e.

}
,

Γ1(λ, η) = inf
{∫

Q′η∩S(u)
Ψ1([u], ν(u)) dH1

(xα) : u ∈ SBV(Q′η ; R3
), u|∂Q′η

= γλ,η,∇u = 0 a.e.
}
,

with Ψ1(λ, ν) := inf{Ψ1(λ, (ν|t)) : t ∈ R}. For each A ∈ R3×2 , Bβ ∈ R3×3×2 , Λ,Θ ∈ R3×3×2 , and η ∈ S1 ,

W2(A,Bβ) = inf
{∫

Q′
W(A,∇u) dxα+

∫
Q′∩S(u)

Ψ2([u], ν(u)) dH1
(xα) : u ∈ SBV(Q′; R3×3

), uik|∂Q′ =
2∑

j=1
Bijkxj

}
,

Γ2(Λ,Θ, η) = inf
{∫

Q′η
W∞(u,∇u) dxα+

∫
Q′η∩S(u)

Ψ2([u], ν(u)) dH1
(xα) : u ∈ SBV(Q′η ; R3×3

), u|∂Q′η
= uΛ,Θ,η

}
,

where

uΛ,Θ,η(xα) :=

{
Λ if 0 6 xα · η < 1/2,

Θ if−1/2 < xα · η < 0,

and with W and Ψ2 as follows: decomposing B ∈ R3×3×3 into (Bβ ,B3) ∈ R3×3×2×R3×3×1 (i.e., Bβ denotes Bijk

with k = 1, 2), define W(A,Bβ) := inf{W(A, (Bβ ,B3)) : B3 ∈ R3×3×1}, and for Λ ∈ R3×3 and η ∈ S1 , let

Ψ2(Λ, η) := inf{Ψ2(Λ, (η|t)) : t ∈ R}.
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Future Developments

to find analogous results for p = 1;

to look at higher order expansions, in the sense of
Γ-convergenceMatias-M.-Owen-Zappale – in progress — or

to look at other rescalings;

to model complex systems, such as biological
membranesDeseri, Owen, Pocivavsek – in progress,
incorporating shearing, tilting, thinning/thickening, bending
effects;

to study evolution problems.

Thank you for your attention!
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