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Scope - |

The scope of this research is to refine classical continuum
theories of elastic bodies to broaden their range of applicability.

We consider two types of refinement, to

() incorporate into a classical theory the effects of
submacroscopic slips and separations (disarrangements);
(i adapt the theory to the description of thin bodies.

Examples are

() finely layered bodies (stack of papers), granular bodies (pile
of sand), bodies with defects (metal bar);

(i) membranes (sheet of rubber), thin plates (sheet of metal),
fibered thin bodies (sheet of paper).
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Dimension reduction

Dimension reduction is a way of adapting classical confinuum
theories of elastic bodies to thin objects.

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 3/21



Dimension reduction

Dimension reduction is a way of adapting classical continuum
theories of elastic bodies to thin objects.

It usually involves a limit process in which one or two physical
dimensions are shrunk to zero. Typical limit processes can be
done either via Taylor expansion! or I'-convergence.?
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Dimension reduction

Dimension reduction is a way of adapting classical continuum
theories of elastic bodies to thin objects.

It usually involves a limit process in which one or two physical
dimensions are shrunk to zero. Typical limit processes can be
done either via Taylor expansion! or I'-convergence.?

Information about the microsfructure can be lost in the
dimension reduction procedure.

'Deseri, Piccioni, Zurlo — Contin. Mech. Thermodyn. (2008)

2|e Dret, Raoult — J. Math. Pures Appl. (1995)
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Structured Deformations

Introduced to provide a multiscale geometry that captures the
contributions at the macrolevel of both smooth geometrical
changes and non-smooth geometrical changes
(disarrangements) at submacroscopic levels®.

3Del Piero, Owen — ARMA (1993)
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Structured Deformations

Intfroduced to provide a multiscale geometry that captures the
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contributions at the macrolevel of both smooth geometrical
changes and non-smooth geometrical changes
(disarrangements) at submacroscopic levels®.
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Structured Deformations

Intfroduced to provide a multiscale geometry that captures the
contributions at the macrolevel of both smooth geometrical
changes and non-smooth geometrical changes
(disarrangements) at submacroscopic levels®.

Revisited in the spirit of an energetic formulation — good for
variational methods?.

A structured deformation is a pair (g, G) € SBV x L' with
Dg = VgV + gl @ vHN L,
Approximation Theorem: there exists f,, € SBV such that

e and  vh M.

3Del Piero, Owen — ARMA (1993) TI-ITI
4Choksi, Fonseca — ARMA (1997)
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Some examples of Structured Deformations
Structured Deformations are limits of simple deformations.
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Some examples of Structured Deformations
Structured Deformations are limits of simple deformations.
@ brokenramp: N =1,Q=(0,1), k =0, g(x) = 2x, and G(x) = 1.
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Some examples of Structured Deformations
Structured Deformations are limits of simple deformations.
@ brokenramp: N =1,Q=(0,1), k =0, g(x) = 2x, and G(x) = 1.
Take fy(x) :=x + 2, fort <x < ®#landk =0,...,n - 1.
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Some examples of Structured Deformations
Structured Deformations are limits of simple deformations.
@ brokenramp: N =1,Q=(0,1), k =0, g(x) = 2x, and G(x) = 1.
Take fo(x) :=x+ £, for 2 <x <2 andk =0,...,n — 1. Then,
fo(x) = 2x, Vfy(x) = 1 and Df,, = 1L451 71 26,
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Some examples of Structured Deformations
Structured Deformations are limits of simple deformations.
@ brokenramp: N =1,Q=(0,1), k =0, g(x) = 2x, and G(x) = 1.
Take fy(x) =2+ £, for 2 <x <l andk =0,...,n — 1. Then,
fo(x) = 2x, Vfy(x) = 1 and Df,, = 1L451 71 26,

/ 7
/ 7 J
/ ; 7

h f2 fs I fioons I

D fy D fy D fy D fy D*fs, D*f5. D*fs

@ deckofcards: N =38,Q=(0,1)3, k =0, g(x) = (x1 + x3,%2,%3),
and G(x) = L.
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Some examples of Structured Deformations
Structured Deformations are limits of simple deformations.

@ brokenramp: N =1,Q=(0,1), k =0, g(x) = 2x, and G(x) = 1.
Take fy(x) =2+ £, for 2 <x <l andk =0,...,n — 1. Then,
fo(x) = 2x, Vfy(x) = 1 and Df,, = 1L451 71 26,

/ VA
s 7,
/ 7,

h f2 fs I fioons I

D fi D D fs D, D*fy, D* f3, D* f4
@ deck of cards: N =3,Q = (0,1)3, /<; =0.,8(x) = (x1 + x3,%2,x3).
and G(x) = L. Take f, (x) := (x1 + £, x9,23), for £ < xg < 1L
andk=0,...,n—1. LM
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Structured Deformations are limits of simple deformations.
@ brokenramp: N =1,Q=(0,1), k =0, g(x) = 2x, and G(x) = 1.
Take fy(x) =2+ £, for 2 <x <l andk =0,...,n — 1. Then,
fo(x) = 2x, Vfy(x) = 1 and Df,, = 1L451 71 26,
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h f2 fs I fioons I

D fy D fy D fy D fy D*fs, D*f5. D*fs

@ deck of cards: N =3,Q = (0,1)3, /<; =0,8(x) = (x1 + x3,x2,x3).
and G(x) = L. Take f, (x) := (x1 + £, x9,23), for £ < xg < 1L
andk =0,...,n—1. Then, f,(x) = g(x), Vfu(x )_]Iond Tm
Dfy, = IL3+3371 201 /n(x3)e1 ® e
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More on Disarrangements

From the examples it should be clear (and this can be
formalized) that the singular part D*f,, (supported on the jump
set S(fn)) diffuses in the limit to generate volume energy
(supported on the bulk).
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More on Disarrangements

From the examples it should be clear (and this can be
formalized) that the singular part D*f,, (supported on the jump
set S(fn)) diffuses in the limit to generate volume energy
(supported on the bulk). HYN=1(S(f,)) — oo, but [D*£,(Q) < +oc.

Singularities are essentially captured by M and its derivatives.
If G and M provide information about plastic deformations, M
and curl M allow to describe the Burgers vectors and the
dislocation density field in a body containing defects.

So, M = Vg — G is a measurement of how non classical a
deformation is.
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Energies

Typical energies of interest in this context are of the form

E(u) = /Q W(Vu, V) + [ (o) + / Uo([Va], v,

S(u) S(Vu)

with growth and coercivity assumptions on the densities
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Typical energies of interest in this context are of the form

E(u) = /Q W(Vu, V) + [ (o) + / Uo([Va], v,

S(u) S(Vu)

with growth and coercivity assumptions on the densities — which
in general fail to be convex — relaxation.
The generality of such energies allows to model many physical
phenomena:

@ W(LA)=W(¢) = (€12, 1 = ¢p = 0: elasticity;

@ W(EA) =W(&) = 3|¢% y1 = 1, ¢y = 0: Griffith’s model for
fractures;
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Energies

Typical energies of interest in this context are of the form

E(u) = /Q W(Vu, V) + [ (o) + / Uo([Va], v,

S(u) S(Vu)

with growth and coercivity assumptions on the densities — which
in general fail to be convex — relaxation.
The generality of such energies allows to model many physical
phenomena:
@ W(LA)=W(¢) = (€12, 1 = ¢p = 0: elasticity;
@ W(EA) =W(&) = 3|¢% y1 = 1, ¢y = 0: Griffith’s model for
fractures;

@ W depending on A includes bending effects.

TUT
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Scope - |l

3d-body
(ii

\\\\iL\
(i)l

2d-body with disarrangements

3d-body with disarrangements

l(ﬁ)

2d-body with disarrangements

o ) - = DA
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Programme: do the two relaxation procedures and find an

infegral representation.
Questions: (a) how are the two doubly relaxed energies related

to one another (is the diagram a lozenge)?
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Scope - |l

3d-body

2d-body 3d-body with disarrangements

(i)“ (i)
2d-body with disarrangements 2d-body with disarrangements

Programme: do the two relaxation procedures and find an
infegral representation.

Questions: (a) how are the two doubly relaxed energies related
to one another (is the diagram a lozenge)?

(b) Does a simultaneous relaxation procedure yield a lower
energy (what about a central path)? m
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Relaxation

Relaxing the energy E means to compute
I(g,G,T):=

inf {
{un,}CSBV?

n—o00

.. L! Lt 2 *
liminfE(u,) : u, = g,Vu, = G,Vu, =T

o ) - = Al
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Relaxation

Relaxing the energy E means to compute

I(g.G.1) = inf {liminfE(u,): u Lo Vu, B G, V2u, - r}
9 9 . {un}CSBVZ 00 nj - n 9 n ) n
and possibly to get a representation formula,where the bulk and

surface densities are obtained by a cell formula,® derived by a
blow-up method.b

5Choksi, Fonseca — ARMA (1997) TI'ITI
SFonseca, Muller - SIAM J. Math. Anal. (1992)



Relaxation

Relaxing the energy E means to compute

I(g,G.1) = inf {liminfE(u,): u Lo Vu, B G, V2u, - r}
9 ) . {un}CSBVZ 00 nj) - n 9 n 9 n
and possibly to get a representation formula,where the bulk and

surface densities are obtained by a cell formula,® derived by a
blow-up method.®

In the formula above, we are looking for the most economicall
way to approximate the (second-order)’ structured deformation
(g,G,T') by means of more regular deformations.

SChoksi, Fonseca — ARMA (1997)
SFonseca, MUller — SIAM J. Math. Anal. (1992) TI-ITI
’Barroso, Matias, M., Owen — ARMA (2017)



Relaxation ¢ la Choksi-Fonseca - |

The relaxation of an energy like

. N v N-1
E() = /Q W(Vu)dcN + /S RO
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Relaxation ¢ la Choksi-Fonseca - |

The relaxation of an energy like
B = [ WOwdeY + [ ilulvw) dn
Q S(u)nQ
leads to the representation formula

I(g,G) :/H(Vg,G) dL’N+/ h(lgl,v(g))dHN 1.
Q S(g)NQ

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 10/ 21



Relaxation a la Choksi-Fonseca - I

The densities H and A are given by
H(A,B)— inf{ / W(Vu)dcN + / ([, v(w)) dHN 1
Q Sw)NQ
u € SBV(Q:RN), u g (x) = Ax, [Vu| € LP(Q), / Vu = B},
Q
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Relaxation a la Choksi-Fonseca - I

The densities H and A are given by

H(A,B):= inf{/QW(Vu)d£N+ /S( )mth([u],y(u))dHN_l:

u € SBV(QEY),uqlx) ~ Av. [Vu| eP@Q), [ Vu - B},
Q

h(&,n) = inf{ /S( o W([u],v(w))dHN 1 u € SBV(Q,;RN),

u‘aQn (x) - u’&,ﬁ? Vu' =0 C]e}7
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Relaxation a la Choksi-Fonseca - I

The densities H and A are given by

H(A,B):= inf{/QW(Vu)d£N+ /S( )mth([u],y(u))dHN_l:

u € SBV(QEY),u () - Av. [Vul e L7(Q), [ Vu —B},
Q

h(&,n) = inf{ /S( o W([u],v(w))dHN 1 u € SBV(Q,;RN),

u‘aQn (x) - u’&,ﬁ? Vu' =0 C]e}7

where
¢ ifog<x-n<1/2,
ue,(x) = .
0 |f—1/2<x-77<0. TI.ITI
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Dimension reduction in the context of SD8

E.(w):= | Waa(Vie) d + /

Q:NS(u)

hsa(u],v(w)) dH?
foru € SBV(Q.;R3), with Q. := w x (-5, 5).

8Carita, Matias, M., Owen - J. Elast. (2018) :

o ) = Al
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Dimension reduction in the context of SD8

Be(u) = | Wsa(Vu)ds + /Q . )h3d([u],u(u)) dn?

foru € SBV(Q.;R3), with Q. := w x (-5, 5).

Wsd, had
W3d,2d, had,2d Wa34,sD, h3d,sD
o on
W3d4,24,5D, h3d,2d,5D W34,5D,2d, h3d,sD,2d

Left-hand side: first dim. red., then sfructured deformations;
Right-hand side: first structured deformations, then dim. red. Tum
8Carita, Matias, M., Owen — J. Elast. (2018)

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 12/ 21




Hypotheses on the energy densities
We assume that:
(H1) There exists a constant ¢y > 0 such that growth conditions
from above and below are satisfied

1
Q\AVK Wsq(A),

(Wsg(A) — Waq(B)|< cwl|A — B|(1 + |AP~! + |B]P1),

forany A, B € R3*3, and for some p > 1.
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Hypotheses on the energy densities
We assume that:
(H1) There exists a constant ¢y > 0 such that growth conditions
from above and below are satisfied

1
AP W3q(A),
Cw
(Wsg(A) — Waq(B)|< cwl|A — B|(1 + |AP~! + |B]P1),

forany A, B € R3*3, and for some p > 1.
(Hj) There exists a constant ¢, > 0, such that for all (A, v) € R3 x §?

1
— Al < hga(A,v) < eplAl.
ch
(Hs) hsq(-,v) is positively 1-homogeneous: for all ¢ > 0, A € R?
h3d(t)‘7 V) = thSd()‘v V)'
(Hy) hsq(-,v) is subadditive: for all A1, Ag € R3 m

hsa(M + A2, v) < hgg(A1,v) + hsqg(Ae, v).
2May 2018  13/21



Dimension reduction
Rescale by ¢ in x5 and consider the functional F.(u)

B [ WV T Jax e [ (o 2 v,
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Dimension reduction
Rescale by ¢ in x5 and consider the functional F.(u)

The coercivity assumption grants boundedness of the gradients
in L?, so that ¢, 1V3u, has a weak limit d € LP(Q;R?). Therefore,
given (u,d) € SBV(w;R3?) x LP(w;R?), let

i 1 3
Faqoq(,d) = inf{ HminfF., (un) : un € SBV(% R, u, © 5 7

i
n—o0

v3un

dixs — dinLP(w;R3), v(uy) -e3 = O}.
I ¢n

TUT
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Dimension reduction
Rescale by ¢ in x5 and consider the functional F.(u)

EET(u) = /Qng (Vau v§u>dx+/ms(u) hSd([u]aVa(u) V?)iu)>d7'£2(x)'

The coercivity assumption grants boundedness of the gradients
in L?, so that ¢, 1V3u, has a weak limit d € LP(Q;R?). Therefore,
given (u,d) € SBV(w;R3?) x LP(w;R?), let

i
n—o0

i 1 3
Faqoq(,d) = inf{ HminfF., (un) : un € SBV(% R, u, © 5 7

v3u'n

I €n

drs —~din Lp(w;RS), v(up) -es = O}.

Theorem (Carita-Matias-M.-Owen (2018))

Faazs@d) = | Waaoa( VT D, + o P02 ) ).
w wnNS(u
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Integral representation
Theorem (Carita-Matias-M.-Owen (2018) — cont’d)

Wsgoq: R¥2 x R3 — [0, +00) and hggo,: R3 x St — [0, +00) are

Wsa2q(A,d) = inf{ Wsq(Vaulz) dx, +/ haa([u], (u)) dH (x.) :
Q’ Q'NS(u)

u € SBV(Q';R%), z € LY, _..(R%:R?), ulag (xa) :Axm/

7

de(\' = d}v

4
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Integral representation
Theorem (Carita-Matias-M.-Owen (2018) — cont’d)

Wsgoq: R¥2 x R3 — [0, +00) and hggo,: R3 x St — [0, +00) are

Wsd,zdm,d)inf{ / Wag(Vaulz) dx, + / haa([ul, () A (x.,) :
Q' Q'NS(u)

u € SBV(Q;R%), z € LE, . (RLR?), ulog (xa) :Axm/ zdr, = d},
Q/

hagsa(A ) =inf{ /Q o, Pl P0) ') w € SBVIQ) ),
NS (u

u|(’)Q;7 (xa) = ’Y)\,U(xa)a Vu = 0, O.e.};
with

A ifOLx, n< i
’Y)\,?](x(k) = , 1 2
0 if—5<x4-1<0.

4
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The proof is obtained via blow-up:
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About the proof

The proof is obtained via blow-up:

@ we prove upper bounds for the Radon-Nikodym derivatives
of Faq.04(w,d) with respect to £2 and H1LS(w) at x € w:
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About the proof

The proof is obtained via blow-up:

@ we prove upper bounds for the Radon-Nikodym derivatives
of Faq.04(w,d) with respect to £2 and H1LS(w) at x € w:

dFs,24(@, d)
dcz

dFs,24(@, d)

(0) < Wsa 20 (Vali(x0), d(x0)), dHILS(@)

(x0) S haa,2a ([t] (x0), v (@) (x0)).

Marco Morandotti (TUM) Dimension reduction and SD 22 May 2018 16 /21



About the proof

The proof is obtained via blow-up:

@ we prove upper bounds for the Radon-Nikodym derivatives
of Faq.04(w,d) with respect to £2 and H1LS(w) at x € w:

dFsq04(u,d)
dcz

dFsq00(u,d)

(0) < Wsa 20 (Vali(x0), d(x0)), dHILS(@)

(x0) S haa,2a ([t] (x0), v (@) (x0)).

@ lower bounds for the Radon-Nikodym derivatives of i, the
weak-* limit of the measures 1,

Vgun

n

Hn (B) = / W3d (Vaun
BxI

)dx+/ hsa([wn], 7(un) ) dH? (2).
(BXI)NS (un)

with respect to £2 and |[z]|H!L S(%):
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About the proof

The proof is obtained via blow-up:

@ we prove upper bounds for the Radon-Nikodym derivatives
of Faq.04(w,d) with respect to £2 and H1LS(w) at x € w:

dFsq04(u,d)
dcz

dFsq00(u,d)

(0) < Wsa 20 (Vali(x0), d(x0)), dHILS(@)

(x0) S haa,2a ([t] (x0), v (@) (x0)).

@ lower bounds for the Radon-Nikodym derivatives of i, the
weak-* limit of the measures 1,

Vgun

n

jin(B) 1= / Xlwgd(vaun ) + /(Ws(un)hsdqun},ﬂ(un))d#(x)-

with respect to £2 and |[z]|H!L S(%):

dp hisa,2q([@] (x0), v(7)(x0))
@ Cs@) ™ 2 ) '
m
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The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The denisities for the doubly relaxed energy are obtained:
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The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The denisities for the doubly relaxed energy are obtained:

Fd,24,50(&, G, d) =/ Wsa,24,50(VE, G,d) dx.+ o h3a,24,50((8], v(8)) dH",
w wnNS(g

Fsd,sp,24(8,G,d) Z/ Wisa,sp,24(VE, G, d) dx.,, / o haa,sp 24(8), v(g)) dH.
w wnNS(g

.
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The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The denisities for the doubly relaxed energy are obtained:

Fd,24,50(&, G, d) =/ Wsa,24,50(VE, G,d) dx.+ o h3a,24,50((8], v(8)) dH",
w wnNS(g

Fsd,sp.24(8; G,d) =/ Wsa sp,24(VE, G, d) dxa-F/ o h3a,sp,24((8], v(8)) dH.
w wnNS (g

.

Recall that 1
En I
the vector d emerges as the weak limit of the out-of-plane

deformation gradient. m
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An example

Consider an initial energy E. in which the densities are W3; = 0
and Agg(A,v) = [A-v|.

Theorem (Carita-Matias-M.-Owen (2018))

Let W3q = 0 and h3q(A,v) = |- v|. Then the two functionals
F3a.24,8p ANA F3q 5p 20 COINCide (and neither one depends on d):

Fsa,s0,24(8, G, d) = Faq 50,248, G /|t1“ Vg — G)|dx\+ |ig]- 7(8)| dH" (x.).

wnS(@)
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An example

Consider an initial energy E. in which the densities are Ws; = 0
and Agg(A\,v) = [A-v|.

Theorem (Carita-Matias-M.-Owen (2018))

Let W3q = 0 and hzq(A,v) = |- v|. Then the two functionals
Fad.2q4,5p ANd Fzq sp 2q COiNcide (and neither one depends on d):

Fsa,s0,24(&, G, d) = Faqsp,24(8, G / | tr( /- G)| dro+ |lg]- 7(8)| dH (x.).
wnS(g)

The result is in agreement with previous results in the literature.”

?Owen, Paroni — ARMA (2015) m
Barroso, Matias, M., Owen - MEMOCS (2017)
Silhavy - MEMOCS (2017)
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Comparison with other relaxation procedures
For a function u € SBV2(Q.;R3), consider the initial energy'°

MS __ 2 v 2
EYS () ._/QE W(Va, v u)der/Q Uy ([u], v(w)) dH2 (x)

NS(u)

n / Us([Va], v(Va)) 12 (x)
Q.NS(Vu)

""Matias, Santos — Appl. Math. Optim. (2014)
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Comparison with other relaxation procedures
For a function u € SBV2(Q.; R?), consider the initial energy'®

E¥w) = [ W(Vu,Vu)dx+ / Uy ([u], v(w)) dH? (x)

Q. Q.NS(u)
F [ wa((Tul (V) )
Q.NS(Vu)

and the relaxation of the rescaled energy J. (1) = 1EMS (u)

1(g,G,d) = inf{ liminfd., (un) : un € SBVX(LR?),un 5 g, Elvg,un A, Vaun B G},

n—oo

Theorem (Carita-Matias-M.-Owen (2018))
The simulfaneous procedure yields a relaxed energy which is
lower than the two sequential procedures.

OMatias, Santos — Appl. Math. Optim. (2014)
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Comparison with other relaxation procedures
For a function u € SBV2(Q.; R?), consider the initial energy'®

E¥w) = [ W(Vu,Vu)dx+ / Uy ([u], v(w)) dH? (x)

Q. Q.NS(u)
F [ wa((Tul (V) )
Q.NS(Vu)

and the relaxation of the rescaled energy J. (1) .= 1EMS(u)

T e

1(g,G,d) = inf{ liminfd., (un) : un € SBVX(LR?),un 5 g, Elvg,un A, Vaun B G},

n—oo

Theorem (Carita-Matias-M.-Owen (2018))

The simulfaneous procedure yields a relaxed energy which is
lower than the two sequential procedures.

In fact, in the case W3y = 0 and hgg(\,v) = |A - v|, the relaxed
energy is always equal to zero.

OMatias, Santos — Appl. Math. Optim. (2014)
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The functional I admits an integral representation I = I; + I, where, for (2, G) € BV?(w; R?) x BV (w; R3%2),

g dDg
166 = [ W@ - voa + [ w( - ) ansen + [ rde v ant o)
and for (d, G) € BV (w; R3) xBV (w; R3*2)
dD°(d, G N _
a(d, ) = [Wa(d, 6, 94, 96) o+ W5 (4,6, T A, 011+ Taa, 1+, @, 0)7, (@, 6 !

The energy densities of I; are obtained as follows: for each A € R3%2, X € R3, and 1 € St,
Wi(A) = inf{/ Ty (], v(w) M (x0) s u € SBV(Q'iB®),ul 01 = 0, Vu = A we.},
Q'NS(u)
Ti(X,n) = inf{/ Uy ([u], V(u))dH (xa):u € SBV(Q,],]R3),u|DQ/ =5, Vu=0 a.e.},
@, NS () n o
with Uy (X, v) := inf{¥ (X, (v]t)) : t € R}.ForeachA € R3X2, B, ¢ R3*3%2, A 0 € R3X3X2 and ) € s!,

Wa(A,Bg) fmf{/, W(A, Vu) dxu+/ S )qzzq 1 v(w) dH! () s u € SBV(Qs RP¥?), uy | 1 = Zsukxj}

rar o) =int{ [ W st [ Fallul ) d (0) s € SBV@ BN ul s, = uno |
Q7 Q' NS (u) n

where

o) A fO<Sx, - <1/2,
Up. e Koy ) 1=
AOm © if—1/2<x0 1 <0,

and with W and T, as follows: decomposing B € R**3X3 info (B, By) € R¥*3X2xR3*3x1 (e, B; denotes By,
with = 1,2), define W(A, B) := inf{W(A, (B3, B3)) : By € R¥*3X1} andfor A € R3*% and ) € s, let
Wy (A, n) :=inf{ Wy (A, (n]t)) : t € R}.
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Future Developments

@ to find analogous results for p = 1;
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Future Developments

@ to find analogous results for p = 1;

@ to look at higher order expansions, in the sense of
I'-convergence'!! — or

@ to look at other rescalings;

""Matias-M.-Owen-Zappale - in progress
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Future Developments

@ to find analogous results for p = 1;

@ to look at higher order expansions, in the sense of
I'-convergence'!! — or

@ to look at other rescalings;

@ to model complex systems, such as biological membranes'?,
incorporating shearing, tilting, thinning/thickening. bending
effects;

""Matias-M.-Owen-Zappale — in progress m
2Deseri, Owen, Pocivavsek — in progress
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@ to look at higher order expansions, in the sense of
I'-convergence'!! — or

@ to look at other rescalings;

@ to model complex systems, such as biological membranes'?,
incorporating shearing, tilting, thinning/thickening. bending
effects;

@ to study evolution problems.
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Future Developments

@ to find analogous results for p = 1;

@ to look at higher order expansions, in the sense of
I'-convergence'!! — or

@ to look at other rescalings;

@ to model complex systems, such as biological membranes'?,
incorporating shearing, tilting, thinning/thickening. bending
effects;

@ to study evolution problems.

Thank you for your attention!

""Matias-M.-Owen-Zappale — in progress m
2Deseri, Owen, Pocivavsek — in progress
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